Newton's forward interpolation formula is
\[y = y_0 + p \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \ldots \]
Differentiating both sides w.r. to \(p \) we have,
\[\frac{dy}{dp} = \Delta y_0 + 2p-1 \Delta^2 y_0 + \frac{3p^2-6p+2}{2!} \Delta^3 y_0 + \ldots \]
But \(p = x - x_0 \), \(\frac{dp}{dx} = \frac{1}{h} \)
Now
\[\frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx} = \frac{1}{h} \left[\Delta y_0 + 2p-1 \Delta^2 y_0 + \frac{3p^2-6p+2}{2!} \Delta^3 y_0 + \ldots \right] \]......(1)
At \(x = x_0 \), \(p = 0 \). Hence putting \(p = 0 \),
\[\frac{dy}{dx} \text{ at } x_0 = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \ldots \right] \]
Again differentiating (1) w.r.to \(x \) we get,
\[\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{1}{h} \left[2/2! \Delta^2 y_0 + 6p-3 \Delta^3 y_0 + \frac{12p^2-36p+22}{3!} \Delta^4 y_0 + \ldots \right] \]
Putting \(p = 0 \) we obtain
\[\frac{d^2y}{dx^2} \text{ at } x_0 = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 - \frac{5}{6} \Delta^5 y_0 + \frac{137}{180} \Delta^6 y_0 + \ldots \right] \]......(1)
\[\frac{d^3y}{dx^3} = \frac{1}{h^3} \left[\Delta^3 y_0 - 2/3 \Delta^4 y_0 + \ldots \right] \]......(4)

ii) Newton's backward interpolation formula is
\[y = y_n + p \nabla y_n + \frac{p(p+1)}{2!} \nabla^2 y_n + \frac{p(p+1)(p+2)}{3!} \nabla^3 y_n + \ldots \]
Differentiating both sides w.r. to \(p \) we have,
\[\frac{dy}{dp} = \nabla y_n + 2p+1 \nabla^2 y_n + \frac{3p^2+6p+2}{3!} \nabla^3 y_n + \ldots \]
Since \(p = x - x_n \), \(\frac{dp}{dx} = \frac{1}{h} \)
Now,
\[\frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx} = \frac{1}{h} \left[\nabla y_n + 2p+1 \nabla^2 y_n + \frac{3p^2+6p+2}{3!} \nabla^3 y_n + \ldots \right] \]......(5)
At \(x = x_n \), \(p = 0 \). Hence putting \(p = 0 \) we get,
\[\frac{dy}{dx} \text{ at } x_n = 1 / h \left[\nabla^2 y_n + 2 \nabla^3 y_n + 3 \nabla^4 y_n \ldots \right] \ldots (6) \]

Again differentiating (5) w.r. to x we get,

\[\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dp} \right) \frac{dp}{dx} \]

\[= \frac{1}{h} \left[\nabla^2 y_n + \frac{6p + 6}{3!} \nabla^3 y_n + \frac{6p^2 + 18p + 11}{12} \nabla^4 y_n + \ldots \right] \]

Putting \(p = 0 \) we obtain

\[\frac{d^2y}{dx^2} \text{ at } x_n = \frac{1}{h^2} \left[\nabla^2 y_n + \frac{11}{12} \nabla^3 y_n + \frac{5}{6} \nabla^4 y_n + \ldots \right] \ldots (7) \]

\[\frac{d^3y}{dx^3} \text{ at } x_n = \frac{1}{h^3} \left[\nabla^3 y_n + \frac{3}{2} \nabla^4 y_n + \ldots \right] \ldots (8) \]

Problems

1. Given that \(x : 1 \ 1.1 \ 1.2 \ 1.3 \ 1.4 \ 1.5 \ 1.6 \)
\(y : 7.989 \ 8.403 \ 8.781 \ 9.129 \ 9.451 \ 9.750 \ 10.031 \)

Find \(\frac{dy}{dx} \) & \(\frac{d^2y}{dx^2} \) at \(x = 1.1 \) & \(1.6 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\Delta y)</th>
<th>(\Delta^2 y)</th>
<th>(\Delta^3 y)</th>
<th>(\Delta^4 y)</th>
<th>(\Delta^5 y)</th>
<th>(\Delta^6 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>7.989</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>8.403</td>
<td>-0.036</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>8.781</td>
<td>-0.030</td>
<td>-0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>9.129</td>
<td>-0.026</td>
<td>0.000</td>
<td>-0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>9.451</td>
<td>-0.023</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>9.750</td>
<td>-0.018</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>10.031</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We have \(\frac{dy}{dx} \) at \(x_0 = 1 / h \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \ldots \right] \]

\[\frac{dy}{dx} \text{ at } 1.1 = 3.946 \]

\[\frac{d^2y}{dx^2} \text{ at } x_0 = 1 / h^2 \left[\Delta^2 y_0 - \frac{11}{12} \Delta^3 y_0 + \frac{5}{6} \Delta^4 y_0 - \frac{137}{180} \Delta^5 y_0 + \ldots \right] \]

\[\frac{d^2y}{dx^2} \text{ at } 1.1 = -3.545 \]
we use the above difference table and the backward difference operator?
\[
\frac{dy}{dx} \text{ at } x = x_n = \frac{1}{h} \left[\nabla y_n + \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^3 y_n + \ldots \right]
\]
\[
\frac{dy}{dx} \text{ at } x = 1.6 = 2.727
\]
\[
\frac{d^2y}{dx^2} \text{ at } x = 1.6 = -1.703
\]

1) Find the first and second derivatives of the function tabulated below at the points x = 2 and x = 1.9

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>0.128</td>
<td>0.544</td>
<td>1.296</td>
<td>2.432</td>
<td>4</td>
</tr>
</tbody>
</table>

2) Find the first and second derivatives of the function tabulated below at the points x = 1.1 and x = 1.0

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>0.128</td>
<td>0.544</td>
<td>1.296</td>
<td>2.432</td>
<td>4</td>
</tr>
</tbody>
</table>

3) Find the first two derivatives of \((x)^{1/3}\) at x = 50 and x = 56 given the table below

<table>
<thead>
<tr>
<th>x</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>3.684</td>
<td>3.7084</td>
<td>3.7325</td>
<td>3.7563</td>
<td>3.7798</td>
<td>3.8030</td>
<td>3.8259</td>
</tr>
</tbody>
</table>

DERIVATIVES USING STIRLING'S FORMULA

\[
\frac{dy}{dx} \text{ at } x = x_0 = \frac{1}{h} \left\{ \frac{1}{2} (\Delta y_0 + \Delta y_1) - \frac{1}{12} (\Delta^3 y_1 - \Delta^3 y_2 + \ldots) \right\}
\]
\[
\frac{d^2y}{dx^2} \text{ at } x = x_0 = \frac{1}{h^2} \left\{ \frac{1}{2} (\Delta^2 y_1 - \Delta^2 y_2 + \ldots) \right\}
\]
\[
\frac{d^3y}{dx^3} \text{ at } x = x_0 = \frac{1}{h^3} \left\{ \frac{1}{2} (\Delta^3 y_1 - \Delta^3 y_2 + \ldots) \right\}
\]

Problems

1. Find the first and second derivatives of the function tabulated below at x = 0.6

<table>
<thead>
<tr>
<th>x</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1.5836</td>
<td>1.7974</td>
<td>2.0442</td>
<td>2.3275</td>
<td>2.6511</td>
</tr>
</tbody>
</table>

Since x = 0.6 is in the middle of the table we will use stirling's formula
\[\begin{array}{ccccccc}
 x & y & \Delta y & \Delta^2 y & \Delta^3 y & \Delta^4 y \\
 0.4 & 1.5836 & 0.2138 & & & \\
 0.5 & 1.7974 & 0.0330 & 0.0035 & & \\
 0.6 & 2.0442 & 0.0365 & 0.0003 & 0.0038 & \\
 0.7 & 2.3275 & & & & \\
 0.8 & 2.6511 & & & & \\
\end{array} \]

By Stirling's formula
\[
\frac{dy}{dx} \text{ at } x = x_0 = \frac{1}{2} \left\{ \frac{1}{h^2} (\Delta y_0 + \Delta y_{-1}) - \frac{1}{12} (\Delta^3 y_{-1} + \Delta^3 y_{-2}) + \frac{1}{60} (\Delta^5 y_{-2} + \Delta^5 y_{-3}) \ldots \right\}
\]
\[
\frac{d^2 y}{dx^2} \text{ at } x = x_0 = \frac{1}{2h^2} \left\{ \Delta^2 y_{-1} - \frac{1}{12} \Delta^4 y_{-2} + \ldots \right\}
\]

\[
\frac{d^2 y}{dx^2} \text{ at } x = 0.6 = 3.6475
\]

Home work

1) Find the value of \(f'(0.5) \) using Stirling's formula from the following data

\begin{align*}
 x & : 0.35 \ 0.4 \ 0.45 \ 0.5 \ 0.55 \ 0.6 \ 0.65 \\
 y & : 1.521 \ 1.506 \ 1.488 \ 1.467 \ 1.444 \ 1.418 \ 1.389
\end{align*}

NUMERICAL INTEGRATION

1) **NEWTON – COTES QUADRATURE FORMULA**

\[
I = nh \left[\frac{y_0 + n \Delta y_0 + n(n-3) \Delta^2 y_0}{2} + \ldots \right]
\]

2) **TRAPEZOIDAL RULE**

\[
\int_{x_0}^{x_0+ph} f(x) \, dx = h \left[\frac{(y_0+y_n)}{2} + 2(y_1+y_2+\ldots+y_{n-1}) \right]
\]
3) SIMPSON'S ONE-THIRD RULE
\[\int_{x_0}^{x_n} f(x) \, dx = \frac{h}{3} \left[(y_0+y_n) + 4(y_1+y_3+......y_{n-1}) + 2(y_2+y_4+......+y_{n-2}) \right] \]

4) SIMPSON'S THREE-EIGHTH RULE
\[\int_{x_0}^{x_n} f(x) \, dx = \frac{3h}{8} \left[(y_0+y_n) + 3(y_1+y_2+y_3+......) + 2(y_3+y_6+......) \right] \]

Evaluate \(\int_0^1 \frac{1}{1+x^2} \, dx \) by using

1) Trapezoidal rule
2) Simpson's 1/3 rule
3) Simpson's 3/8 rule

Divide the integral \((0,6)\) into six parts each of width \(h = 1\)

\[x : \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \]
\[y : \quad 1 \quad 0.5 \quad 0.2 \quad 0.1 \quad 0.0588 \quad 0.0385 \quad 0.072 \]

By Trapezoidal rule
\[\int_{x_0}^{x_n} \frac{1}{1+x^2} \, dx = \frac{h}{2} \left[(y_0+y_6) + 2(y_1+y_2+y_4+y_5) \right] = 1.4108 \]

By Simpson's 1/3 rule
\[\int_{x_0}^{x_n} \frac{1}{1+x^2} \, dx = \frac{3h}{2} \left[(y_0+y_6) + 4(y_1+y_3+y_5) + 2(y_2+y_4) \right] = 1.3662 \]

By Simpson's 3/8 rule
\[\int_{x_0}^{x_n} \frac{1}{1+x^2} \, dx = \frac{3h}{8} \left[(y_0+y_6) + 3(y_1+y_2+y_3+y_4+y_5) + 2y_3 \right] = 1.3571 \]

Home work

1) Use trapezoidal rule to evaluate \(\int_0^3 x^3 \, dx \) considering 5 sub-intervals
2) Evaluate \(\int_{-2}^{3} x^2 \, dx \) by trapezoidal rule
3) Evaluate \(\int_{-3}^{3} x^4 \, dx \) by using trapezoidal rule and Simpson's rule
Difference Equations

An equation which expresses a relation between the independent variable, the dependent variable and the successive differences of the dependent variable is called a difference equation.

Eg: \(\Delta^4 y_x + 5 \Delta^4 y_x + 6 \Delta y_x + 18 \ y_x = x + \sin x \) is the difference equation. Since \(\Delta \) is the forward difference and \(y_x \) is a function of \(x \).

Order and degree of the difference equation

The order of a difference equation written in the form free from \(\Delta \)'s, is the difference between the highest and lowest subscripts of \(y \) or arguments of \(y \). Thus the order of

\[
y_{x+3} - 5 \ y_{x+2} + 7 \ y_{x+1} + \ y_x = 10x - x = 3
\]

The degree of a difference equation written in the form free from \(\Delta \)'s, is the highest power of the \(y \)'s.

Eg: \((E^2 - 5E + 16) y_x = e^x \) is of degree 1

Solution of a difference equation

A solution of a difference equation is a function of its variable which satisfies the difference equation.

General solution of the difference equation

The general solution or complete solution of a difference equation is the sum of two functions.

Linear difference equation

A Linear difference equation with constant coefficients is of the form

\[
y_{n+r} + a_1 y_{n+r-1} + a_2 y_{n+r-2} + \ldots + a_r y_n = f(n) \quad \text{where} \quad a_1, a_2, \ldots \text{are constants.}
\]

The complete solution of a linear difference equation with constant coefficients is

\[
y_n = CF + PI
\]

Where CF is the complementary function and PI is the particular integral.

Steps for finding CF

\[
y_{n+r} + a_1 y_{n+r-1} + a_2 y_{n+r-2} + \ldots + a_r y_n = 0 \quad \text{where} \quad a_1, a_2, \ldots \text{are constants.}
\]

i. Write the equation in the symbolic form

\[
(E^r + a_1 E^{r-1} + \ldots + a_r)y_r = 0
\]

ii. Write down the auxiliary equation

\[
i.e., \quad E^r + a_1 E^{r-1} + \ldots + a_r = 0
\]

write down the solution as follows

<table>
<thead>
<tr>
<th>Roots for A.E.</th>
<th>Solution (CF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n) (Real and distinct roots)</td>
<td>(c_1 \lambda_1^n + c_2 \lambda_2^n + \ldots + c_n \lambda_n^n) ((c_1, c_2, \ldots, c_n) are constants)</td>
</tr>
</tbody>
</table>
2. \(\lambda_1, \lambda_1, \lambda_3, \ldots, \lambda_n \) (2 real and equal roots) \((c_1 + c_2n) \lambda_1^n + \lambda_3^n + \ldots \)

3. \(\lambda_1, \lambda_1, \lambda_4 \ldots \) (3 real and equal roots) \((c_1 + c_2n + c_3n^2) \lambda_1^n + \ldots \)

4. \(\alpha + i\beta, \alpha - i\beta \ldots \)

Problems

1) Solve the difference equation \(U_{n+3} - 2U_{n+2} - 5U_{n+1} + 6U_n = 0 \)

Symbolic form of the given equation is
\[
(E^3 U_n - 2E^2 U_n - 5E U_n + 6 U_n) = 0
\]
\[
(E^3 - 2E^2 - 5E + 6) U_n = 0
\]

The auxiliary equation is
\[
E^3 - 2E^2 - 5E + 6 = 0
\]
\[
E = 1, -2, 3
\]

\[
\text{C.F.} = C_1 1^n + C_2 (-2)^n + C_3 3^n
\]

2) Solve \(U_{n+2} - 2U_{n+1} + U_n = 0 \)

Symbolic form of the given equation is
\[
(E^2 U_n - 2E U_n + U_n) = 0
\]
\[
(E^2 - 2E + 1) U_n = 0
\]

The auxiliary equation is
\[
E^2 - 2E + 1 = 0
\]
\[
E = 1, 1
\]

\[
\text{C.F.} = (C_1 + C_2 n) 1^n = C_1 + C_2 n
\]

3) Solve \(y_{n+1} - 2y_n \cos \alpha + y_{n-1} = 0 \)

Symbolic form of the given equation is
\[
(E^2 Y_{n-1} - 2E \cos \alpha Y_{n-1} + Y_{n-1}) = 0
\]
\[
(E^2 - 2E \cos \alpha + 1) Y_{n-1} = 0
\]

The auxiliary equation is
\[
E^2 - 2E \cos \alpha + 1 = 0
\]
\[
E = \cos \alpha + i \sin \alpha, \cos \alpha - i \sin \alpha
\]
\[
\text{C.F.} = y_n = r^n (C_1 \cos n\theta + C_2 \sin n\theta)
\]
\[
\theta = \tan^{-1}(\beta / \alpha) = \tan^{-1}(\sin \alpha / \cos \alpha) = \tan^{-1}(\tan \alpha) = \alpha
\]
\[
r = \sqrt{\alpha^2 + \beta^2} = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1
\]
\[
\text{C.F.} = y_{n-1} = C_1 \cos (n-1)\alpha + C_2 \sin (n-1)\alpha
\]
Rules for finding the particular integral

Consider the equation,
\[y_{n+r} + a_1 y_{n+r-1} + a_2 y_{n+r-2} + \ldots + a_r y_r = f(n) \]
The symbolic form is,
\[\Phi(E) y_n f(n) = \ldots (1) \]
Where \(\Phi(E) = E^r + a_1 E^{r-1} + \ldots + a_r \)

Then the particular integral is given by,
\[P.I. = \frac{1}{\Phi(E)} f(n) \]

Case 1
When \(f(n) = a^n \)
\[P.I. = \frac{1}{\Phi(E)} a^n = \frac{1}{\Phi(E)} a^n \]
\[\Phi(a) \quad \text{provided} \quad \Phi(a) \neq 0 \]
Replace \(E \) by \(a \)
If \(\Phi(a) = 0 \) then \((E - a) \) must be a factor of \(\Phi(E) \) and we operate as follows,
\[\frac{1}{\Phi(E)} a^n = na^{n-1} \]
\[E - a \]
\[\frac{1}{(E - a)^2} a^n = n(n-1)a^{n-2} \]
and so on.

Case 2
When \(f(n) = n^p \)
\[P.I. = \frac{1}{\Phi(E)} n^p = \frac{1}{\Phi(E)} n^p \]
\[= [\Phi(1 + \Delta)]^{-1} n^p \]

Case 3
If \(f(x) = \sin kn \) or \(\cos kn \)
\[f(x) = \sin kn \]
\[P.I. = \frac{1}{\Phi(E)} \sin kn \]
\[= \frac{1}{\Phi(E)} \left[e^{ikn} - e^{-ikn} \right] \]
\[= \frac{1}{2!} \left[\frac{1}{\Phi(E)} a^n - \frac{1}{\Phi(E)} b^n \right] \]
Where \(a = e^{ik} \) and \(b = e^{-ik} \). Now proceed as in case 1

\(f(x) = \cos kn \)
\[P.I. = \frac{1}{\Phi(E)} \cos kn \]
\[= \frac{1}{\Phi(E)} \left[e^{ikn} + e^{-ikn} \right] \]
\[= \frac{1}{2} \left[\frac{1}{\Phi(E)} a^n - \frac{1}{\Phi(E)} b^n \right] \]
Where \(a = e^{ik} \) and \(b = e^{-ik} \). Now proceed as in case 1

Case 4
If \(f(x) = a^n f(x) \) where \(f(x) \) is a polynomial of degree \(p \) in \(x \) then
\[P.I. = \frac{1}{\Phi(E)} a^n f(x) = \frac{a^n}{\Phi(a.E)} f(x) \]
Now proceed as in case 2
PROBLEMS

1) Solve \(y_{n+2} - 4 y_{n+1} + 3 y_n = 5^n \)
Symbolic form is \((E^2 - 4 E +3) y_n = 5^n \)
The auxiliary equation is, \(E^2 - 4 E +3 = 0 \)
\[E = 1, 3 \]
C.F. = \(C_1 1^n + C_2 3^n \)
P.I. = \(\frac{1}{5^n} = \frac{1}{5^2 - 4 \times 5 + 3} \cdot \frac{5^n}{8} \)
The complete solution is \(y_n = C_1 1^n + C_2 3^n + \frac{5^n}{8} \)

2) Solve \(y_{n+2} - 4 y_{n+1} = n^2 + n - 1 \)
Symbolic form is \((E^2 - 4) y_n = n^2 + n - 1 \)
The auxiliary equation is, \(E^2 - 4 = 0 \)
\[E = 2, -2 \]
C.F. = \(C_1 2^n + C_2 (-2)^n \)
P.I. = \(\frac{1}{E^2 - 4} \cdot \frac{1}{n^2 + n - 1} \)
\[= \frac{1}{(1+\Delta)^2 - 4} \cdot \frac{1}{[n]^2 +2[n]-1} \]
\[= \frac{1}{1+\Delta^2 +2\Delta-4} \cdot \frac{1}{[n]^2 +2[n]-1} \]
\[= \frac{1}{\Delta^2 +2\Delta-3} \cdot \frac{1}{[n]^2 +2[n]-1} \]
\[= -1 \cdot \frac{1}{3} \cdot \frac{1}{(1-\frac{\Delta^2+2\Delta}{3})^{\frac{3}{3}}} \cdot \frac{1}{[n]^2 +2[n]-1} \]
\[= -\frac{1}{3} \cdot \frac{1}{(1-2\Delta + \frac{\Delta^2}{3})^{\frac{3}{3}}} \cdot \frac{1}{[n]^2 +2[n]-1} \]
\[= -\frac{n^2 - 7n - 17}{3 \cdot 9 \cdot 27} \]
The complete solution is,
\[y_n = C_1 2^n + C_2 (-2)^n - \frac{n^2 - 7n - 17}{3 \cdot 9 \cdot 27} \]
Problems

1. Solve $U_{n+2} - 4U_{n+1} + 4U_n = 2^n$
2. Solve $y_{n+2} - 4y_n = 2^n$
3. Solve $u_{n+2} - 4U_{n+1} + U_n = 3$
4. $y_{x+2} + y_x = \sin x$
5. $y_{n+2} - 4y_{n+1} - 5y_n = 3^n + 5n + 8$